

# UNIVERSITY OF JAMMU

# NOTIFICATION (19/Aug/Adp/32)

It is hereby notified for the information of all concerned that the Vice-Chancellor, in anticipation of the approval of the Competent Bodies, has been pleased to authorize the adoption of revised Syllabus of Bachelor of Engineering (Electronics & Communication Engineering) for Semester III & IV under the Choice Based Credit System as per the model curriculum of the AICTE (as given in the Annexure) for the candidates of all (Govt./Pvt./UIET) Engineering Colleges affiliated with the University of Jammu for the Examinations to be held in the years indicated against each Semester as under :-

Branch

Semester

For the Examination to be held in the years

E&C

Semester-III

December 2019, 2020, 2021 and 2022

Semester-IV

May 2020, 2021, 2022 and 2023

The Syllabi of the course is available on the University Website: www.jammuuniversity.in.

Sd/-DEAN ACADEMIC AFFAIRS

No. F.Acd/III/19/4805-48/6 Dated:20/08/2019

Copy for information & necessary action to:-

- 1. Dean Faculty of Engineering
- 2. Principal, GCET/MIET/MBSCET/UIET/BCET/YCET
- 3. C.A to the Controller of Examinations
- 4. Assistant Registrar (Exams/Confidential)
- 5. Section Officer (Confidential)
- 6. Incharge University Website

Assistant Registrar (Academics)

# B.E. Electronics & Communication Engineering 3rd Semester Examination to be held in the Year December 2019, 2020, 2021, 2022

# **B.E.** Electronics & Communication Engineering 3<sup>rd</sup> Semester

Contact Hrs: 26

| COURSE COURSE TYPE |                                                            | Course Title                                        | LOAD<br>ALLOCATION |   | MARKS DISTRIBUTION |          | TOTAL<br>MARKS | CREDITS | %CHANGE |      |
|--------------------|------------------------------------------------------------|-----------------------------------------------------|--------------------|---|--------------------|----------|----------------|---------|---------|------|
| CODE               |                                                            |                                                     | L                  | T | P                  | Internal | EXTERNAL       | WIARKS  | ļ       |      |
| PEC-301            | Professional Core Courses Electronic Devices & Circuits- I |                                                     | 3                  | 1 | 0                  | 50       | 100            | 150     | 4       | 100% |
| PEC-302            | Professional Core<br>Courses                               | Digital<br>Electronics                              | 3                  | 1 | 0                  | 50       | 100            | 150     | 4       | 100% |
| EEE-302            | Engineering Science Course                                 | Network<br>Theory                                   | 3                  | 0 | 0                  | 50       | 100            | 150     | 3       | 100% |
| HMC-302            | Humanities &<br>Social Science<br>& Management<br>Courses  | Entrepreneur-<br>ship and<br>Business<br>Strategies | 3                  | 0 | 0                  | 50       | 100            | 150     | 3       | 100% |
| BSC-301            | Basic Science<br>Course                                    | Numerical<br>Methods<br>&Transform<br>Calculus      | 3                  | 1 | 0                  | 50       | 100            | 150     | 4       | 100% |
| PEC-311            | Professional Core<br>Courses                               | Electronic<br>Devices Lab                           | 0                  | 0 | 2                  | 75       |                | 75      | 1       | 100% |
| PEC-312            | Professional Core<br>Courses                               | Digital<br>Electronics Lab                          | 0                  | 0 | 2                  | 75       |                | 75      | 1       | 100% |
| PEC-313            | Professional<br>Core Courses                               | Electronics<br>Workshop                             | 0                  | 0 | 2                  | 50       |                | 50      | 1       | 100% |
| PEC-303<br>MOC-301 | Professional<br>Core Courses                               | Mini Project MOOCs                                  | 0                  | 0 | 2                  | 50       |                | 50      | 1       | 100% |
| 1/100-301          | TOTAL                                                      |                                                     |                    | 3 | 8                  | 500      | 500            | 1000    | 22      |      |

CLASS: B.E. 3<sup>RD</sup> SEMESTER CREDITS: 4

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

COURSE NO: PEC-301

COURSE TITLE: ELECTRONIC DEVICES AND

**CIRCUITS-I** 

**DURATION OF EXAM: 3 HOURS** 

Marks
L T P Theory Sessional
3 1 0 100 50

|        | COURSE OUTCOMES                                                                                         |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------|--|--|--|--|
| At the | At the end of the course student will be able to:                                                       |  |  |  |  |
| CO1    | Understand the operation of semiconductor devices, rectifiers, concept of noise removal using filters   |  |  |  |  |
|        | and their applications.                                                                                 |  |  |  |  |
| CO2    | Apply the concepts of different types of transistors, its biasing conditions to evaluate load lines and |  |  |  |  |
|        | operating point parameters.                                                                             |  |  |  |  |
| CO3    | Analyze the frequency response and different coupling methods of multistage amplifiers.                 |  |  |  |  |
| CO4    | Design different configurations of transistor using hybrid models.                                      |  |  |  |  |

## **Detailed Syllabus**

## **Section-A**

**Semiconductor Diodes:** Introduction, PN junction biasing conditions, Volt-ampere characteristics, breakdown mechanism( Avalanche, Zener breakdown), Zener diode, Tunnel diode, Schottky diode, LED, photodiode, Varactor diode, PN junction diode as rectifiers, filters, clippers and clampers. (10 hours)

**Transistors:** Working principle, generalized transistor equation, transistor configurations (CE,CC,CB) and characteristics, early effect, Need for biasing, types of biasing circuit, load line concept (AC/DC), Bias stabilization, Introduction to JFET, characteristics, symbol and operation, Biasing of FET with necessary derivations, MOSFET (depletion and enhancement). (11 hours)

#### **Section-B**

**Single and Multistage Amplifiers:** Need for cascading, Techniques for improving input resistance (Darlington transistor, Bootstrap emitter follower amplifiers), method of coupling multistage amplifiers (RC coupling, DC coupling, transformer coupling), Frequency response of amplifiers, Effect of emitter and bypass capacitors on the bandwidth and frequency response of a cascaded amplifiers. (11hours)

**Hybrid Parameters:** Introduction. Two port network, hybrid model for CE,CC,CB configuration and their analysis using h-parameters, Miller theorem, Introduction to hybrid pie-model, relationship between h-parameters and hybrid pie-parameters, Current Gain with and without resistive load, single stage CE transistor amplifiers response. (09 hours)

#### **RECOMMENDED BOOKS:**

Integrated Electronics
 Electronics Devices
 Electronics Devices
 Millman Halkias
 Bolystead
 Malvino Leach
 Microelectronics Circuits
 Adel S. Sedra

CLASS: B.E. 3<sup>RD</sup> SEMESTER CREDITS: 4

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

COURSE NO: PEC-302 Marks

COURSE TITLE: DIGITAL ELECTRONICS

L T P Theory Sessional
DURATION OF EXAM: 3 HOURS

3 1 0 100 50

|        | COURSE OUTCOMES                                                                           |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------|--|--|--|--|
| At the | At the end of the course student will be able to:                                         |  |  |  |  |
| CO1    | Understand and examine various number systems to be used in digital design.               |  |  |  |  |
| CO2    | Minimize the expressions using Karnaugh map and Quine Mc-Clusky method and implement them |  |  |  |  |
|        | using Logic Gates in different logic families.                                            |  |  |  |  |
| CO3    | Analyze and design various combinational and sequential circuits.                         |  |  |  |  |
| CO4    | Formulate problems and simplify with state minimizing techniques.                         |  |  |  |  |

## **Detailed Syllabus**

## Section-A

Number System, Radix conversion, Arithmetic with base other than ten, Binary codes – weighted/Non weighted codes, alphanumeric code, Subtraction of signed/unsigned number. (8 hours)

Logic Gates, Boolean algebra, Simplification of Boolean expressions, Minimization techniques, Karnaugh map (up to five variables), Quine Mc-Clusky method, Simplification of Logic families – RTL, DTL, TTL, ECL & MOS families and their characteristics. (10 hours)

## **Section-B**

Combinational logic circuits: Half and Full Adders, Subtractors, BCD Adder, Comparators, Multiplexer, Realization of function using MUX, Demultiplexer, Decoder, Encoder, Priority encoders, Code converters, General problems, PLA, Design of combinational circuit using PLA & PAL. (9 hours)

Introduction to sequential logic circuits, Synchronous and Asynchronous operation, Flip-Flops—R-S, J-K, D, T & Master-Slave flip-flop, Conversion of flip-flops, Shift registers. (8 hours)

Analysis of asynchronous & synchronous sequential counter, Design of sequential logic circuits, Problem formulations, State minimization techniques. (6 hours)

#### **RECOMMENDED BOOKS:**

| 01. | Digital Electronics                 | By R.P Jain  |
|-----|-------------------------------------|--------------|
| 02. | Digital Electronics & Microcomputer | By R.K. Gaur |
| 03. | Computer System Architecture        | By M.M. Mano |

04. Digital Electronics By Jamini & K.M. Backward

CLASS: B.E. 3<sup>RD</sup> SEMESTER CREDITS: 3

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

COURSE NO: EEE-302 Marks

COURSE TITLE: NETWORK THEORY

DURATION OF EXAM: 3 HOURS

L T P Theory Sessional
3 0 0 100 50

|           | COURSE OUTCOMES:                                                                                 |  |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------|--|--|--|--|
| At the en | At the end of the course student will be able to:                                                |  |  |  |  |
| CO1       | Apply the knowledge of basic circuital law, dot convention and topological description of        |  |  |  |  |
|           | Electrical networks.                                                                             |  |  |  |  |
| CO2       | Acquire knowledge about the application of differential equation method and Laplace transform in |  |  |  |  |
|           | electrical circuits.                                                                             |  |  |  |  |
| CO3       | Understand pole-zero configuration and determine parameters of two port network.                 |  |  |  |  |
| CO4       | Understand concept and design of filters and synthesize circuits using Foster and Cauer forms.   |  |  |  |  |

## **Detailed Syllabus**

## **Section-A**

**Conventions for describing networks:** Reference directions for currents and voltages, Conventions for Magnetically Coupled Circuits, Circuit Topology. (5 hours)

**First order differential equation & Laplace Transformations:** Differential equations as applied in solving networks, Application of initial conditions, evaluating initial conditions in networks. Laplace Transformation: Initial and final value theorems, convolution integral, convolution as summation, Solution of network problems with Laplace transformation. **(7 hours)** 

**Network Functions-poles and zeroes:** Ports or terminal pairs, Network functions for one port and two port networks, Poles and Zeros of network functions, Restriction on pole and Zero locations for driving point and transfer functions. Time domain behaviour from pole-Zero plot. (7 hours)

## **Section-B**

**Two port parameters:** Impedance, Admittance, transmission and hybrid parameters, Relationship between parameter sets, parallel, series & Cascade connection of two port Networks, Characteristics impedance of two port networks.

(7 hours)

Filters: Filter fundamentals, filter classification, Constant K & m Derived Filters, Design of filters. (6 hours)

**Network Synthesis:** Synthesis problem formulation, properties of positive real functions. Hurwitz polynomials properties of RC, LC and RL driving point, functions. Foster and Cauer synthesis of LC, RL and RC circuits

(6 hours)

#### **RECOMMENDED BOOKS:**

| 1. | Network Analysis                             | Van Valkenberg       |
|----|----------------------------------------------|----------------------|
| 2. | Network Analysis & Synthesis                 | F.F. Kuo             |
| 3. | Introduction to Circuit Synthesis & Design   | Temes & La Patra     |
| 4. | Fundamentals of Network Analysis & Synthesis | Perikari             |
| 5. | Network Theory & Filter Design               | V. Atre              |
| 6. | Network analysis and Synthesis               | Sudhakar Shyam Mohan |

CLASS: B.E. 3<sup>RD</sup> SEMESTER

BRANCH: ELECTRONICS & COMMUNICATION ENGG. CREDITS: 3

**COURSE NO: HMC-302** 

COURSE TITLE: ENTREPRENEURSHIP AND

BUSINESS STRATEGIES

L T P Theory Sessional
3 0 0 100 50

Marks

**DURATION OF EXAM: 3 HOURS** 

| At the | COURSE OUTCOMES At the end of the course student will be able to:                                                |  |  |  |
|--------|------------------------------------------------------------------------------------------------------------------|--|--|--|
| CO1    | Understand in detail entrepreneurial skills and hence may opt entrepreneurship as a career option.               |  |  |  |
| CO2    | Understand women/social entrepreneur & legal forms of industrial ownership.                                      |  |  |  |
| CO3    | Apply proper knowledge about lean startups, business pitching, project initiation, execution and implementation. |  |  |  |
| CO4    | Start their own SSI unit with adequate knowledge of schemes and policies for entrepreneurship development.       |  |  |  |

## **Detailed Syllabus**

#### **Section-A**

**Entrepreneurship:** Definition and Types of entrepreneurs; Qualities of an entrepreneur; factors affecting entrepreneurship; Role of an entrepreneur in economic development; Difference between entrepreneur and manager; Barriers to entrepreneurship. (6 hours)

New Generations of Entrepreneurship: Women Entrepreneur: Classification of Women Entrepreneur in India, Problems of Women Entrepreneur, steps for promoting women entrepreneurship; Social Entrepreneur: Problems and steps for promoting social entrepreneurship.

(6 hours)

**Legal Forms of Industrial Ownership:** Sole Proprietorship, Partnership, Joint Stock Company (Features, Merits and Demerits); Introduction to business models (5 hours)

## **Section-B**

**Lean Startups:** Introduction to lean startups, Business pitching: Definition, types and importance. (5 hours) **Starting a New project/ Venture:** Scanning the environment, product development and selection, project report preparation, project resourcing, project planning and scheduling using networking techniques of PERT/CPM(concepts only). (7 hours)

**Small Scale Industries and policies for entrepreneurship development:** Definition of small scale industries; objectives. Role of SSI in economic Development of India. SSI registration, NOC from pollution Board; Machinery and equipment selection; Schemes and Policies for entrepreneurship development. **(6 hours)** 

#### **RECOMMENDED BOOKS:**

- 1. Fundamentals of Entrepreneurship, H. Nandan.
- 2. Alexander Osterwalder & Yves Pigneur, Business model generation
- 3. Small scale industries and Entrepreneurship, Vasant Desai.
- 4. Management of small scale Industries; Vasant Desai.
- 5. Entrepreneurial Development, S S Khanka
- 6. Entrepreneur Revolution: How to Develop your Entrepreneurial Mindset and Start a Business that works, Daniel Priestley

CLASS: B.E. 3<sup>RD</sup> SEMESTER **CREDITS: 4** 

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

**COURSE NO: BSC-301** Marks

**COURSE TITLE: NUMERICAL METHODS AND**  $\mathbf{L}$ Theory Sessional  $\mathbf{T}$ TRANSFORM CALCULUS 3 50

100

**DURATION OF EXAM: 3 HOURS** 

|        | COURSE OUTCOMES                                                                                 |
|--------|-------------------------------------------------------------------------------------------------|
| At the | end of the course student will be able to:                                                      |
| CO1    | Learn the basics of Operators, their types and interpolation.                                   |
| CO2    | Find out the exact real root of algebraic and transcendental equations.                         |
| CO3    | Learn the concept of Laplace Transform, inverse Laplace transform of various function and its   |
|        | applications.                                                                                   |
| CO4    | Understand the idea of Fourier transform, Fourier sine and cosine transform and their property. |

## **Detailed Syllabus**

## **Section-A**

NUMERICAL METHODS: Definition of operators, Finite and divided difference, Interpolation using Newton's and Lagrange's formulas. Numerical differentiation, numerical integration: Trapezoidal rule and Simpson's 1/3rd rule. Numerical solutions of algebraic and Transcendental equations by Regula Falsi, Newton-Raphson and direct iterative methods, solution of differential equations by Taylor's method, Picard's method, Euler and modified Euler's methods. RungeKutta method of fourth order for solving first and second order equations. (20 hours)

## **Section-B**

LAPLACE TRANSFORM: Laplace Transform, Properties of Laplace Transform: Linear property, change of scale property, first shifting property, second shifting property, Multiplication by t property, division by t property, convolution property, Laplace transform of periodic functions, Laplace transform of derivatives. Finding inverse Laplace transform by different methods. Evaluation of integrals by Laplace transform, solving differential equations of higher order by Laplace Transform. **(12 hours)** 

FOURIER TRANSFORM: Fourier Integrals, Fourier transforms, Fourier integral theorem, Fourier sine and cosine integrals, and their inverses. Properties of Fourier transforms. Application of Fourier transform to solve integral equations. Fourier sine and cosine integrals, and their inverses. **(08 hours)** 

#### **RECOMMENDED BOOKS:**

- 1. N.P. Bali and M. Goyal, "A text book of Engineering Mathematics", Laxmi Publications, 2008.
- 2. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 2010.
- 3. Dr.Bhopinder Singh," ENGINEERING MATHEMATICS III"
- 4. Dr.Bhopinder Singh," Complex analysis and Numerical Methods".

CLASS: B.E. 3<sup>RD</sup> SEMESTER CREDITS: 1

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

COURSE NO: PEC-311
COURSE TITLE: ELECTRONIC DEVICES&
CIRCUITS- I LAB

Marks
Practical
0 0 2

75

| COURSE OUTCOMES |                                                                                      |  |  |  |
|-----------------|--------------------------------------------------------------------------------------|--|--|--|
| At the          | At the end of the course student will be able to:                                    |  |  |  |
| CO1             | Plot forward and reverse characteristics of silicon and Zener diodes.                |  |  |  |
| CO2             | Fabricate half and full wave rectifiers and evaluate their performance parameters.   |  |  |  |
| CO3             | Plot the characteristics of FET using trainer kits.                                  |  |  |  |
| CO4             | Plot V-I characteristics of transistor for various configurations using trainer Kit. |  |  |  |

#### LIST OF PRACTICALS

- 1. To perform the operation characteristics of PN junction diode(Forward/Reverse Characteristics).
- 2. To perform the operation characteristics of Zener diode (Forward/Reverse Characteristics).
- 3. To perform the characteristics of Half wave Rectifier.
- 4. To perform the characteristics of Full wave Rectifier and Bridge Rectifier.
- 5. To perform the operation characteristics (Input/output) of PNP/NPN Transistor (Common Emitter/Common Base).
- 6. To perform the frequency response of signal amplifier (CE/CB).
- 7. To perform the characteristics of FET.
- 8. Determination of h parameter from transistor characteristics.
- 9. Design of Self Bias circuit using BJT.
- 10. Design of Self Bias circuit using FET.

<u>NOTE</u>: Each student has to perform at least eight experiments out of which 40% shall be simulation based. Additional Practical / Experiments will be performed based on the course content requirements.

CLASS: B.E. 3<sup>RD</sup> SEMESTER

**BRANCH: ELECTRONICS & COMMUNICATION ENGG.** 

**COURSE NO: PEC-312** 

COURSE TITLE: DIGITAL ELECTRONIC LAB

|   |   |   | Marks     |
|---|---|---|-----------|
| L | T | P | Practical |
| 0 | 0 | 2 | 75        |

**CREDIT: 1** 

| COURSE OUTCOMES                                   |                                                                         |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------|--|--|
| At the end of the course student will be able to: |                                                                         |  |  |
| CO1                                               | Implement and verify Boolean expressions using Logic Gates.             |  |  |
| CO2                                               | Design and implement various combinational circuits using digital IC's. |  |  |
| CO3                                               | Design seven segment decoder using Logical Gates.                       |  |  |
| CO4                                               | Design and implement various sequential circuits using digital IC's     |  |  |

#### **LIST OF PRACTICALS**

- 1. Verification of truth tables of Logical Gates AND / OR / NOT, NAND, NOR, EXOR, EXNOR, Gates.
- 2. Implementation of Boolean expression using AND, OR, NOT, NAND, & NOR logic.
- 3. Implementation of Decoder, Encoder using IC's & Gates.
- 4. To implement Half Adder, Half Subtractor, Full Adder, Full Subtractor using different IC's & Gates.
- 5. Implementation of multiplexer, demultiplexer using IC's & gates.
- 6. Design of BCD to seven segment display using logical gates & IC's.
- 7. To design & verify truth table of Flip Flops.
- 8. To design various asynchronous counters using flip flops, gates & IC's.
- 9. To design various synchronous counters using flip flops, gates & IC's.
- 10. To design & verify truth tables of shift Registers.

**NOTE:** Each student has to perform at least eight experiments. Additional Practical / Experiments will be performed based on the course content requirements.

CLASS: B.E. 3RD SEMESTER

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

COURSE CODE: PEC-313

COURSE TITLE: ELECTRONICS WORKSHOP

CREDITS: 1

Marks

Practical

0 0 2 50

| COURSE OUTCOMES |                                                        |  |  |  |
|-----------------|--------------------------------------------------------|--|--|--|
| At the e        | At the end of the course student will be able to:      |  |  |  |
| CO1             | Analyze different electronic components.               |  |  |  |
| CO2             | Fabricate various electronic circuits on breadboard.   |  |  |  |
| CO3             | Assemble various type of ICs on breadboard.            |  |  |  |
| CO4             | Design electronic circuits using soldering techniques. |  |  |  |

#### LIST OF PRACTICALS

- 1. Familiarization with various electronic components like resistor, capacitor, transistors, diodes, ICs, transformers etc.
- 2. To assemble the half wave rectifier and full wave rectifier circuit on breadboard.
- 3. To assemble the Common emitter Amplifier circuit
- 4. To assemble the differentiator circuit using IC741 on breadboard.
- 5. To assemble the astable multivibrator using 555 timer IC on breadboard.
- 6. To get familiar with soldering techniques.

**NOTE:** Each student has to perform all the aforementioned Practical / Experiments Additional Practical / Experiments will be performed based on the course content requirements.

CLASS: B.E. 3RD SEMESTER CREDIT: 1

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

COURSE TITLE: MOOCS

L T P Practical

COURSE NO: MOC-301 0 0 2 50

**MOOCS:** A massive open online course (MOOC) is a model for delivering learning content to any person who wants to take a course by means of the web. It has been incorporated in the 3<sup>rd</sup> semester.

#### **Breakup of Marks:**

#### • Attendance- 10 marks

Students will have to visit the lab twice a week as per the time table and pursue their respective online course.

#### • Report file-15 marks

A detailed report of about 20-25 pages has to be submitted to the department at the end of the semester. It should contain details about the course that was undertaken by the student. A copy of the assignments with solutions that have been uploaded on the MOOC platform should also be included in the final report. A copy of the certificate if awarded should also be appended to the report.

#### Presentation- 15 marks.

The presentation should be given to the peers/students focusing on the key points of the course with an aim to share the knowledge.

#### Certification- 10 marks

The students awarded with the certificate will be given 10 marks. (Copy to be attached in the report.)

Marks

CLASS: B.E. 3RD SEMESTER CREDIT: 1

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

COURSE TITLE: MINI PROJECT

COURSE NO: PEC-303

L T P Practical
0 0 2 50

The mini-project is a team activity having 3-4 students in a team. This is electronic product design work with a focus on electronic circuit design. Mini Project should cater to a small system required in laboratory or real life. It should encompass components, devices, analog or digital ICs, with which functional familiarity is introduced. After interactions with course coordinator and based on comprehensive literature survey/need analysis, the student shall identify the title and define the aim and objectives of mini-project. Completed mini project and documentation in the form of mini project report is to be submitted at the end of semester.

#### **Distribution of Marks:**

Attendance 10 marks (20%)

Report files 15 marks (30%)

Actual work done 15 marks (30%)

**Viva-voce** 10 marks (20%)

**Contact Hrs: 28** 

# B.E. Electronics & Communication Engineering 4<sup>th</sup> Semester Examination to be held in the Year May 2020, 2021, 2022, 2023

## B.E. Electronics & Communication Engineering 4th Semester

| Course  | Course                           | Course Title                                       | LOAD<br>ALLOCATIONS |   | MARKS<br>DISTRIBUTION |          | TOTAL        | CREDITS      | %Change        |         |
|---------|----------------------------------|----------------------------------------------------|---------------------|---|-----------------------|----------|--------------|--------------|----------------|---------|
| CODE    | ТүрЕ                             | COURSE TITLE                                       | L                   | T | P                     | INTERNAL | EXTERNAL     | MARKS        | CREDITS        | %CHANGE |
| PEC-401 | Professional<br>Core Courses     | Analog<br>Communication                            | 3                   | 1 | 0                     | 50       | 100          | 150          | 4              | 100%    |
| PEC-402 | Professional<br>Core Courses     | Electronic<br>Devices&<br>Circuits II              | 3                   | 1 | 0                     | 50       | 100          | 150          | 4              | 100%    |
| PEC-403 | Professional<br>Core Courses     | Electromagnetic<br>Waves&<br>Transmission<br>Lines | 2                   | 1 | 0                     | 50       | 100          | 150          | 3              | 100%    |
| PEC-404 | Professional<br>Core Courses     | Signals and<br>Systems                             | 3                   | 1 | 0                     | 50       | 100          | 150          | 4              | 100%    |
| EEE-401 | Engineering<br>Science<br>Course | Electric<br>Machines                               | 2                   | 1 | 0                     | 50       | 100          | 150          | 3              | 100%    |
| PEC-411 | Professional<br>Core<br>Courses  | Analog<br>Communication<br>Lab                     | 0                   | 0 | 2                     | 75       |              | 75           | 1              | 100%    |
| PEC-412 | Professional<br>Core<br>Courses  | Electronic<br>Devices -II Lab                      | 0                   | 0 | 2                     | 75       |              | 75           | 1              | 100%    |
| EEE-411 | Engineering<br>Science<br>Course | Electric<br>Machines Lab                           | 0                   | 0 | 2                     | 50       | 1            | 50           | 1              | 100%    |
| PEC-413 | Professional<br>Core<br>Courses  | MATLAB                                             | 0                   | 0 | 2                     | 50       |              | 50           | 1              | 100%    |
| NCC-401 | Non Credit<br>Course             | Cyber Ethics &<br>Laws                             | 2                   | 0 | 0                     | Satisfac | ctory / Un-s | satisfactory | Non-<br>credit | 100%    |
| TOTAL   |                                  | 15                                                 | 5                   | 8 | 500                   | 500      | 1000         | 22           |                |         |

CLASS: B.E. 4<sup>TH</sup> SEMESTER CREDITS: 4

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

Marks

COURSE NO: PEC-401 L T P Theory Sessional COURSE TITLE: ANALOG COMMUNICATION 3 1 0 100 50

**DURATION OF EXAM: 3 HOURS** 

|                                                                                   | COURSE OUTCOMES                                                                                  |  |  |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|
| At the                                                                            | At the end of the course student will be able to:                                                |  |  |  |  |
| CO1                                                                               | Distinguish between different types of modulation techniques based on bandwidth occupied         |  |  |  |  |
| COI                                                                               | and power transmitted.                                                                           |  |  |  |  |
| CO2 Compare the performance of communication system by evaluating the figure of n |                                                                                                  |  |  |  |  |
| COZ                                                                               | different schemes of modulation.                                                                 |  |  |  |  |
| CO3                                                                               | Understand the performance of communication systems in the presence of noise and                 |  |  |  |  |
| COS                                                                               | interference.                                                                                    |  |  |  |  |
| CO4                                                                               | Familiar with Superhetrodyne receivers.                                                          |  |  |  |  |
| CO5                                                                               | Apply techniques like matched filter, pulse shaping, line encoding and equalizer to mitigate the |  |  |  |  |
| 003                                                                               | adverse effects of noise and dispersion.                                                         |  |  |  |  |

## **Detailed Syllabus**

#### **Section-A**

**Continuous Wave Modulation:** The essentials of a Communication system, Amplitude modulation and demodulation, Generation of DSBSC waves, Coherent detection of DSBSC waves, Single side band modulation and demodulation, vestigial sideband modulation (VSB), frequency division multiplexing, Frequency modulation and demodulation, Introduction to super heterodyne receivers. (12 hours)

**Effect of noise on Analog communication:** Internal and external noise, Signal to noise ratio, Noise figure, Noise in AM and FM systems. (8 hours)

## **Section-B**

**Pulse Modulation:** Sampling Process, Pulse-Amplitude Modulation, and Other forms of Pulse Modulation, Quantization Process, Pulse-Code Modulation, Time-Division Multiplexing, Delta Modulation, Linear Prediction, Differential Pulse-Code Modulation, and Adaptive Differential Pulse-Code Modulation. (10 hours)

**Baseband Pulse Transmission:** Introduction, Matched Filter, Error Rate Due to Noise, Intersymbol Interference, Nyquist's Criterion for distortionless Baseband Binary Transmission. (8 hours)

#### **BOOKS RECOMMENDED:**

| 01. | Electronics Comm. System   | By G. Kennedy      |
|-----|----------------------------|--------------------|
| 02. | Principles of Comm. System | By Taub& Schilling |
| 03. | Communication System       | By SimonHaykins    |

CLASS: B.E. 4<sup>TH</sup> SEMESTER CREDITS: 4

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

COURSE NO: PEC-402 Marks

COURSE TITLE: ELECTRONIC DEVICES & L T P Theory Sessional CIRCUITS II 3 1 0 100 50

**DURATION OF EXAM: 3 HOURS** 

|                                                   | COURSE OUTCOMES                                                                   |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| At the end of the course student will be able to: |                                                                                   |  |  |
| CO1                                               | Analyse classification and topologies of amplifier based on different parameters. |  |  |
| CO2                                               | Understand the concept, need and design of oscillators.                           |  |  |
| CO3                                               | Formulate different types of distortions for large signal amplifiers circuits.    |  |  |
| CO4                                               | Apply the concepts of voltage regulators for practical applications.              |  |  |

## **Detailed Syllabus**

### **Section - A**

**Feedback Amplifier:** Need for feedback, Feedback concept, Advantages of negative feedback, Ways of introducing negative feedback in amplifiers, Gain with and without feedback, Effect of negative feedback on input, output resistance and bandwidth of the amplifier, their respective analysis for feedback amplifiers, Procedure for analysis of feedback amplifiers, Analysis of different topologies. (10 hours)

**Sinusoidal Oscillators:** Introduction, necessity of oscillator, Gain with feedback, Barkhausen criteria, Requirements of oscillators, RC oscillators and phase shift oscillators, Wien bridge oscillators, LC oscillators, Crystal oscillators.

(10 hours)

#### **Section-B**

**Power Amplifiers:** Introduction, general features of power transistor, difference between power transistor & a voltage amplifier, Classification of power amplifiers with necessary derivations, cross over distortion & its remedy, determination of harmonic distortion. (10 hours)

**Voltage Regulators:** Introduction and necessity of Voltage regulators, difference between unregulated & regulated power supply, types of Voltage regulators (Shunt and Series), monolithic and IC regulators (78XX, 79XX, LM317, LM337), switching regulators. (10hours)

#### **BOOK RECOMMENDED:**

Integrated Electronics
 Electronics Devices
 Electronics Devices
 Electronics Devices
 MilmanHalkais
 Bolystead
 Malvino Leach
 Microelectronics
 Sedra& Smith

CLASS: B.E. 4<sup>TH</sup> SEMESTER CREDITS: 3

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

COURSE NO: PEC-403

COURSE TITLE: ELECTROMAGNETIC WAVES & L T P Theory Sessional TRANSMISSION LINES 2 1 0 100 50

DURATION OF EXAM: 3 HOURS

|                                                   | COURSE OUTCOMES                                                                                                |  |  |  |  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| At the end of the course student will be able to: |                                                                                                                |  |  |  |  |
| CO1                                               | Attain knowledge about the vector analysis, coordinate system, electric and magnetic fields and calculation of |  |  |  |  |
|                                                   | flux density, potential and energy densities.                                                                  |  |  |  |  |
| CO <sub>2</sub>                                   | Analyse the Maxwell's equations and the wave propagation equation in free space and in different media.        |  |  |  |  |
| CO3                                               | Study the Transmission line and its parameters.                                                                |  |  |  |  |
| CO4                                               | Solve for transmission line parameters at high frequencies and principles of impedance matching and Smith      |  |  |  |  |
|                                                   | Chart.                                                                                                         |  |  |  |  |

# **Detailed Syllabus**

### **Section - A**

**ELECTROSTATICS:** Revision of vector analysis with rectangular, cylindrical, Spherical & polar coordinates, Electrostatic Potential, Potential gradient, Method of images, Energy density in electrostatics field, Electric field in dielectric media, Capacitance, Solution of Electrostatic problems using Poisson's & Laplace equation.

(6 hours)

**MAGNETOSTATICS:** Magnetic flux density, & Magnetic potential, Torque on a closed circuit, Energy density in the magnetic field. (3 hours)

MAXWELL EQUATION UNIFORM PLANE WAVE :Application of Maxwell equation to circuits, Wave motion in perfect dielectric, Plane wave in Lossy dielectric, Propagation in good conduction, Standing wave ratio, Polarization, Reflection of uniform plane wave. (6hours)

## $\underline{Section-B}$

**TRANSMISSION LINE:** Basic principles of T.L, Equivalent circuit of T.L, Basic transmission line equation, Input impedance, infinite T.L, Characteristics impendence (Zo), Propagation constant, attenuation constant, Phase constant, open and short circuits T.L, Velocity, wavelength, Voltage and power on line. Distortion in line Reflection and its coefficient. (8 **hours**)

**LINE AT HIGH FREQUENCIES**: Line Equation, Waveform on line terminated in various impedances, SWR, & its relation with reflection coefficient. Impedance of short Circuit and open Circuit line. Characteristic of  $\frac{1}{2}$  &  $\frac{1}{2}$  lines. Principle of Impedance matching & use of smith chart for impedance matching using  $\frac{1}{2}$  transformer & single stub. (7 hours)

#### **BOOK RECOMMENDED:**

| 01. | Engineering Electromagnetic     | By | Jseph A. Edminister |
|-----|---------------------------------|----|---------------------|
| 02. | Introduction to Electromagnetic | By | Griffith            |
| 03. | Engineering Electromagnetic     | By | Jr. Hyat            |
| 04. | Network Line & Filters          | By | J. D. Ryder         |
| 05. | Antenna & Wave Propagation      | By | K. D. Prasad        |

CLASS: B.E. 4<sup>TH</sup> SEMESTER **CREDITS: 4** 

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

**COURSE NO: PEC-404** 

**COURSE TITLE: SIGNALS AND SYSTEMS** 

**DURATION OF EXAM: 3 HOURS** 

Marks  $\mathbf{L}$  $\mathbf{T}$ P Theory **Sessional** 100

**50** 

0

1

3

| COURSE OUTCOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|
| At the end of the course student will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          |  |  |  |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Understand Mathematical description and representation of continuous and discrete time signals and       |  |  |  |  |
| systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                          |  |  |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Understand system properties and able to describe systems using linear constant coefficient differential |  |  |  |  |
| COZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | equations and using their impulse response.                                                              |  |  |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Compute the output of an LTI system given the input and the impulse response through convolution         |  |  |  |  |
| COS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sum and convolution integral.                                                                            |  |  |  |  |
| CO4 Develop basic problem-solving skills and become familiar with formulating a mathematical problem-solving skills and become familiar with formulating a mathematical problem-solving skills and become familiar with formulating a mathematical problem-solving skills and become familiar with formulating a mathematical problem-solving skills and become familiar with formulating a mathematical problem-solving skills and become familiar with formulating a mathematical problem-solving skills and become familiar with formulating a mathematical problem-solving skills and become familiar with formulating a mathematical problem-solving skills and become familiar with formulating a mathematical problem-solving skills and become familiar with formulating a mathematical problem-solving skills and become familiar with formulating a mathematical problem-solving skills and become familiar with formulating a mathematical problem-solving skills and become familiar with formulating a mathematical problem-solving skills and become familiar with familiar wi |                                                                                                          |  |  |  |  |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | from a general problem statement.                                                                        |  |  |  |  |

## **Detailed Syllabus**

### Section-A

Representation / Classification of Signals and Systems: Continuous time signals - Discrete time signals -Representation of signals - Step, Ramp, Pulse, Impulse, Sinusoidal, Exponential signals, Operation on the signals - Classification of continuous time and discrete time signals - Periodic, Aperiodic, Deterministic, Random, Even, Odd, Energy and Power Signals – Continuous time and discrete time systems – Classification of systems – Properties of systems. (10 hours)

Continuous Time Signal Representation / Analysis: Fourier series analysis -Representation of periodic signals in trigonometric and exponential forms – Fourier transform analysis of aperiodic signals - Spectral analysis of periodic and aperiodic signals - Parseval's theorem for periodic and aperiodic signals -Laplace transform in signal analysis. **(10 hours)** 

#### **Section-B**

Discrete Time Signal Representation / Analysis: Discrete time Fourier series – Discrete time Fourier transform - Spectrum of discrete time periodic and aperiodic signals -Parseval relations - Z transform -Properties and application to discrete time signal analysis – Inverse Z transform. (10hours)

**Discrete Time Systems:** LTI discrete time systems – Difference equation – Block diagram representation and reduction techniques - impulse response - Convolution Sum -Properties of discrete time LTI systems -Frequency response – Analysis of LTI system using Fourier and Z transform techniques. **(10 hours)** 

#### **BOOK RECOMMENDED:**

| 01. | Fundamentals of Signals & Systems               | By Michael J Roberts                  |
|-----|-------------------------------------------------|---------------------------------------|
| 02. | Principles of Signal Processing & Linear System | By B.P. Lathi                         |
| 03. | Signals & Systems                               | By Alan V. Oppenheim, Alan S. Willsky |
| 04. | Signals & Systems                               | ByA. Anand Kumar                      |
| 05. | Signals & Systems                               | By Simon Haykin, Barry Van Veen       |

CLASS: B.E. 4<sup>TH</sup> SEMESTER CREDITS: 3

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

COURSE NO: EEE-401 Marks
COURSE TITLE: ELECTRIC MACHINES L T P Theory Sessional
DURATION OF EXAM: 3 HOURS 2 1 0 100 50

|                                                   | COURSE OUTCOME                                                                                                        |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| At the end of the course student will be able to: |                                                                                                                       |  |  |
| CO1                                               | To acquire knowledge about the construction and operating characteristics of DC machines.                             |  |  |
| CO2                                               | To identify the relation between transformer and autotransformers.                                                    |  |  |
| CO3                                               | To understand the principle of operation, testing and speed control of synchronous machines as generators and motors. |  |  |
| CO4                                               | To analyze the application of special machines in various fields with their working principle.                        |  |  |

#### **Detailed Syllabus**

#### **Section - A**

**D.C. Generators:** Operating principle, constructional features, E.M.F equation, Armature reaction and commutation, operating characteristics losses and efficiency. (6 hours)

**D.C.Motors:** Operating principle, back EMF, Torque equation, Starters, speed control, operating characteristics, and their applications. (6 hours)

**Transformers:** Principle of operation, Vector diagram, Regulation efficiency parallel operation, tap changing auto transformer. (6 hours)

## **Section - B**

**Synchronous Generators:** Principle of operation, E.M.F equation, Leakage reactance, Vector diagram, Voltage regulation by EMF and MMF method. (6 hours)

**Synchronous Motors:** Principle of operation, Vector diagram, V-curves and inverted V-curves, method of starting and their applications. (6 hours)

**Induction Motors:** Principle of operation, Types of motors, Equivalent circuits, Torque and power calculations, No load and blocked rotor test, speed control, Method of starting and their applications. (**8hours**)

**Special A.C. Machines:** Repulsion motors, A.C series motors, Universal motor, single phase induction motor and their applications. (4 hours)

#### **BOOKS RECOMMENDED:**

1) Theory of A.C Machines A. Langsdrof

2) Principles of D.C. Machines Clayson and Hancock

3) Performance and design of A.C Machines M.G. Say

4) Advanced Electrical Technology H.A. Cotton

CLASS: B.E. 4<sup>TH</sup> SEMESTER **CREDITS: 1** 

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

Marks **COURSE NO: PEC-411** T P **Practical**  $\mathbf{L}$ COURSE TITLE: ANALOG COMM. LAB 0 0 2 **75** 

|                                                   | COURSE OUTCOME                                                                                  |  |  |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|
| At the end of the course student will be able to: |                                                                                                 |  |  |  |  |  |
| CO1                                               | Plot frequency response of RF Tuned Amplifier and IFT by calculating gain at different range of |  |  |  |  |  |
| COI                                               | frequencies.                                                                                    |  |  |  |  |  |
| CO2                                               | Understand the significance of modulation index in communication system by observing maximum    |  |  |  |  |  |
|                                                   | and minimum value in AM modulated wave.                                                         |  |  |  |  |  |
| CO3                                               | Design frequency modulation circuit using IC 8038.                                              |  |  |  |  |  |
| CO4                                               | Design sampler using IC-LF398, ASK modulation circuit using transistor BC547.                   |  |  |  |  |  |

### **LIST OF EXPERIMENTS**

- 01. To plot the response of RF Tuned Amp.
- To find the modulation index of AM signal. 02.
- 03. Hardware realization of AM demodulation circuit.
- 04. Hardware realization of FM modulation circuit using IC 8038.
- To plot the response of IF transformer. 05.
- 06. Hardware realization of sample & hold circuit.
- 07. Hardware realization of ASK modulation circuit.
- 08. Study of PCM & TDM signal.

**NOTE:** Each student has to perform at least six experiments out of which 40% shall be simulation based. Additional Practical / Experiments will be performed based on the course content requirements.

Marks

CLASS: B.E. 4<sup>TH</sup> SEMESTER CREDITS: 1

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

COURSE NO: PEC-412

COURSE TITLE: ELECTRONIC DEVICES -II LAB

L T P Practical
0 0 2 75

|        | COURSE OUTCOME                                                                                    |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| At the | At the end of the course student will be able to:                                                 |  |  |  |  |
| CO1    | Calculate the voltage gain, resistance calculation at input and output using feedback and without |  |  |  |  |
| COI    | feedback.                                                                                         |  |  |  |  |
| CO2    | Distortion output calculation at the output of Class B amplifier.                                 |  |  |  |  |
| CO3    | Plot the frequency response of class C amplifier                                                  |  |  |  |  |
| CO4    | Calculation of output power and efficiency of a class A amplifier.                                |  |  |  |  |
| CO5    | Study the output of push pull amplifier.                                                          |  |  |  |  |
| CO6    | Study stability factor for Zener, shunt and IC regulators.                                        |  |  |  |  |
| CO7    | Designing of voltage regulator using series pass transistor.                                      |  |  |  |  |
| CO8    | Determine the output of Collpitt, Clap, Hartley, Wein bridge in frequency form.                   |  |  |  |  |

### **LIST OF PRACTICALS**

- 01. Determination of voltage gain, Input/output resistance of amplifiers using with & without feedback.
- 02. Determination of Distortion output power in case of push pull class-B amplifier.
- 03. Determination of frequency response of class-C tuned amplifier.
- 04. Study of signal stage class-A power amplifier & determine output power & efficiency.
- 05. Study of complimentary symmetry push pull amplifier.
- 06. Design & determination of stability factor series of Zener shunt Regulator / IC Regulator.
- 07. Design of voltage regulator using series pass transistor.
- 08. Study of Collpitt, Clapp, Hartley, Wein bridge, Phase regulator & determine the frequency of output waveform.

**NOTE:** Each student has to perform at least six experiments out of which 40% shall be simulation based. Additional Practical / Experiments will be performed based on the course content requirements.

CLASS: B.E. 4<sup>TH</sup> SEMESTER CREDITS: 1

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

Marks **COURSE NO: EEE-411** L P **Practical** T COURSE TITLE: ELECTRICAL M/C LAB 0 50

|                                                   | COURSE OUTCOMES                                                        |  |  |
|---------------------------------------------------|------------------------------------------------------------------------|--|--|
| At the end of the course student will be able to: |                                                                        |  |  |
| CO1                                               | Identify the parts of cut-sectional model of D.C.and AC machines.      |  |  |
| CO <sub>2</sub>                                   | Study the operating characteristics of D.C. machine and AC machines.   |  |  |
| CO3                                               | Determine the voltage regulation and efficiency of transformer         |  |  |
| CO4                                               | Perform the turns ratio and polarity test on single-phase transformer. |  |  |

#### LIST OF EXPERIMENTS

- 1. To study the magnetic characteristics of a D.C. Machines at various operating speeds and finds the operating point of D.C. shunt machine from the same.
- 2. To determine the load characteristics of a D.C. Shunt generator and find its overall efficiency.
- 3. To study the torque/speed characteristics of a D.C. series, shunt and compound motor motor using various field tapings.
- 4. To find the efficiency and study various losses of D.C. Machines using Hopkinson test.
- 5. To study a single phase transformer, its Voltage ratio and turns ratio relationship. Perform open & short circuit test to determine losses, efficiency and voltage regulation and also its various parameters.
- 6. Study of parallel operation & synchronization of 3-phase synchronous generators.
- 7. Speed control of 3-phase Induction motor by varying supply frequency & of 3-phase slip Ring Induction motor by Rotor Impedance Control.
- 8. To determine turn ratio and to perform polarity test on single phase transformer.

**NOTE:** Each student has to perform at least six experiments. Additional Practical / Experiments will be performed based on the course content requirements.

CLASS: B.E. 4<sup>TH</sup> SEMESTER **CREDITS: 1** 

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

Marks **COURSE NO: PEC-413** L P **Practical COURSE TITLE: MATLAB PROGRAMMING** 0 0 2 50

| COURSE OUTCOMES                                   |                                                                                                          |  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| At the end of the course student will be able to: |                                                                                                          |  |
| CO1                                               | Perform various arithmetic calculations.                                                                 |  |
| CO2                                               | Find importance of this software for generating equations of vectors and other mathematical expressions. |  |
| CO3                                               | Articulate importance of software's in creating and printing simple,2D &3D plots and execution functions |  |
| CO4                                               | Do various library blocks and their interconnections.                                                    |  |

#### **LIST OF EXPERIMENTS:**

- 1. Study of arithmetic, exponential, Logarithmic, Trigonometric, complex number calculation.
- 2. To generate equation of straight line, Geometric series, points on circle, multiply, divide and exponential vectors.
- 3. To create and print simple plots and execution of functions.
- 4. To generate matrices and vectors, array operations, inline functions anonymous functions etc.
- 5. To generate functions like execution a function, global variable, structures.
- 6. To generate 2D, 3D plots.
- 7. Study of various library blocks and their interconnections.

**NOTE:** Each student has to perform all the aforementioned Practical / Experiments. Additional Practical / Experiments will be performed based on the course content requirements.

CLASS: B.E. 4<sup>TH</sup> SEMESTER

BRANCH: ELECTRONICS & COMMUNICATION ENGG.

**COURSE NO: NCC-401** 

**COURSE TITLE: CYBER ETHICS & LAWS** 

T **Theory** 

CREDITS: 0

L

Satisfactory/Unsatisfactory

| COURSE OUTCOMES                                         |                                                                             |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------|--|
| At the end of the course the student will be able to: - |                                                                             |  |
| CO1                                                     | Understand the basic concepts of Cyber Ethics &Laws.                        |  |
| CO2                                                     | Understand about the constitutional and Human Rights Issues in Cyber space. |  |
| CO3                                                     | Understand Cyber Crimes and Legal Framework.                                |  |
| CO4                                                     | Understand about the limitations and current issues in the area.            |  |

#### **Detailed Syllabus**

Unit-I: Ethics in Cyber Space, Core Values and Virtues, Dimensions of Cyber Ethics in Cyber Society, Cyber Ethics by Norms, Laws and Relations, Principle & Significance of Cyber Ethics, Ethics in Information Society.

Unit-II: Computer and its impact in Society, Overview of Computer and Web Technology, what are Cyber Laws, Need for Cyber Laws, Cyber Jurisprudence at International and Indian Level

Unit-III: Objectives, Importance of Cyber Laws, Right to Access Cyberspace-Access to internet, Right to privacy, Right to data protection, Advantages and Disadvantages

Unit-IV: Cyber Crime against Individual, Institution and State, Types of Cyber Crimes, Cyber Crimes and Legal Framework

Unit-V: Limitations and Current Issues relating Cyber Ethics & Cyber Laws in the Society

#### **BOOKS RECOMMENDED:**

Cyber Laws 1. Justice Yatindra Singh Cyber Laws and Crimes Simplified Adv. Prasant Mali 2. 3. Cyber Ethics 4.0 Christoph Stuckelberger and Pavan

Duggal

**NOTE**: This is a Mandatory Non-Credit Course. Two objective papers will be conducted internally by the department. The students are required to score at least 40% or above in totality to be considered qualified in the course.